

How effective are Thermal Vias? - Less than you think -1

Summary

For six assembly layouts, the temperature of the central component is calculated numerically using 3-dimensional circuit board models. The calculation results sometimes with and sometimes without heat vias rarely differ by more than **10%**. Six examples are not proof, but strong evidence.

Content

In	roduction	2
1.	GaNSystems GS61008P-EVBHF	3
	Data	3
	Model	5
	Calculation Results	6
	With Pad Vias	7
	WithoutThermal Pad Vias	8
2.	STMicroelectronics AEK-AUD-D903V1	9
	Data	9
	Model	10
	Calculation results	11
	With 20 slug vias	11
	Without slug vias	12
	With 80 slug vias	13
	With 14 slug vias	14
3.	Analog DC2387A	15
	Data	15
	Model	16
	Calculation results	18
	Original vias	18
	With thermal vias	18
4.	Microchip EVB-USB5806	19
	Data	19
	Model	20
	Calculation results	21
	Original vias	21
	Without slug vias	21
5.	MiniPC	22
	Data	22
	Modell	23
	Calculation results	23
	Original BGA vias	23
	Without BGA vias	24
6.	Intersil ISL8340	24
	Daten	25
	Modell	25
	Calculation results	27
	Original Viafeld	27
	Without any via	28
Re	ferences	28

¹ Text translated with the help of Google Translate

Introduction

It is generally believed that copper-plated holes underneath a heating component are helpful for heat dissipation, i.e. cooling. Is it really like that? Is it always like that? After all, there are additional paths for the heat flow from the component to the colder environment

- Direct heat emission from the assembly side to the environment via convection and radiation
- Heat spreading (conduction) within the circuit board into colder areas
- Heat dissipation from the opposite side of the component to the environment

Depending on the layout, number of layers and the arrangement of other heat sources, one or another mechanism can be suppressed and therefore minimized. For example, there is no heat spreading if the assembly is the same temperature everywhere because there are many identical components. On the other hand, heat spreading could be increased by placing a GND layer directly below the main heat source to absorb the heat and transport it away to colder edge areas [1].

Thermal vias are holes that are not necessary for the electronic function, but are intended to carry heat away from the component. I always maintain that thermal vias only make sense if the hole is connected to a heatsink². Then the question arises as to whether you really need extra vias, whether you should fill them, or whether the heat sink alone does a lot of additional cooling work. This will not be examined here.

Someone with many years of experience could possibly be able to preview a design to see whether additional holes (without heat sink) would provide an additional cooling effect. Rth formulas [2] or curves in AppNotes [3] are usually only estimates for the design of a via field because the formulas rarely fit your application or the circuit board used is not representative of your specific heat dissipation task. What cannot be reflected in formulas is the special layout or the so-called heat spreading resistance. Heat always flows away in the prepregs and through the layers of the component anyway. How much heat flow can remain for the vias?

It is not possible to give generally valid recipes; the variety of designs and variants is too great. In this article I choose the empirical route using example calculations based on publicly available evaluation boards from semiconductor manufacturers. But even these assembly designs are in some respects academic and not practical. My tool for the subsequent investigations is numerical calculation of the temperature field using the TRM software from ADAM-Research, which combines layers, layout and drilled holes into a three-dimensional thermal model [4].

I will calculate six designs from the internet, once with vias and once without. If the temperature is roughly the same in both versions, then the vias are ineffective.

Table 1 summarizes the calculation results. The temperature values are given relative to an ambient temperature of 25 °C.

² Circuit board, component, vias with heat sinks are the only scenario in which you can get an approximately usable result using a pocket calculator [5].

Board Assembly	P diss	With Pad Vias	Without Pad Vias	Comment
GS61008P-EVBHF	2 x 2.5 W	89 K	99 K	Footprint cooling, thermal pad
AEK-AUD-D903V1	5 W	110 K	120 K	Footprint cooling. Slug-down. 20 Vias
		105 K		80 slug vias
		115 K		14 slug vias
DC2387A	7.3 W	85 K	-	BGA signal vias
		80 K	-	plus recommended thermal vias
EVB-USB5806	5 W	95 K	105 K	Footprint slug
MiniPC	30 W	100 K	120 K	BGA vias
ISL8340	8 W	84 K	88 K	Lowest via effecitivty

 Table 1. Summary T-T_{ambient}

From Table 1 you can see that there is rarely effective heat dissipation through vias on the evaluation boards. The effect is **around 10%**. Because the final temperature is approximately proportional to the power, the temperature gain due to vias is greater with high power dissipation than with low power. For example, with the second board at 1 W the difference dwindles to 10 K /5 = 2 K.

1. GaNSystems GS61008P-EVBHF

Data

The component is designed to be cooled by the circuit board. Quote from the data sheet: *"The substrate is internally connected to the thermal pad on the bottom-side of the package. The source pad must be electrically connected to the thermal pad for optimal performance. <u>The transistor is designed to be cooled using the printed circuit board.</u> The Drain pad is not as thermally conductive as the thermal pad. However, adding more copper under this pad will improve thermal performance by reducing the package temperature."*

Size	76 mm x 80 mm			
Component	Q1, Q2. MOSFET, N-CH, 60V, 50A, TDSON-8 GaN Systems. Thermal pad			
Data sheet	GS61008P-DS-Rev-200402.pdf			
	Recommended PCB Footprint			
	A 1 (Drain) Pad sizes m m m m m m m m m m m m m m m m m m m			
	Package Dimensions			
	Top Batton Image: Constraint of the second of the se			
	- 7.55 mm x 4.6 mm			
	- Drain-to-Source On Resistance $R_{DS(on)}$ 17.5 m Ω @ V_{GS} = 6 V, T _J = 150 °C, I _{DS} = 27 A			
Layers	LAYER 1 (TOP SIDE 0.0508mm/.002") FR406 .355mm (.014") CORE LAYER 2 (GND PLANE 0.0508mm/.002) FR406 OR EQUIV. A/R LAYER 3 (GND PLANE 0.0508mm/.002) FR406 .355mm (.014") CORE LAYER 4 (BOTTOM SIDE 0.0508mm/.002)			
Thermal Vias	40 + 40			
	GS61008P-EVBHF-Technical-Manual-Rev-200526.pdf			
Experiment	No heat sinking, at room temperature: V IN = 48V, V OUT = 12V,I OUT = 12A fsw = 1 MHz Figure 10- GS61008P-EVBHF Evaluation Board (T _{MAX} = 115.3°C)			
	G561008P-EVBHF Rev. 200526 © 2020 GaN Systems Inc. www.gansystems.com			
	Q1≈115 °C, Q2 ≈ 95100 °C			

Model

The data set RSL10-002GEVB_GERBER.ZIP only contains Gerber and drill files. There is no placement file included. Therefore, the position of the components is estimated. The power loss value used for the thermal image is also not exactly known and should be between 2.5 W and 2.8 W per Q.

TRM White Paper No. 13: 'How effective are thermal vias?'

Heat sources and via fields. 40 thermal vias are connected to the heat slug of the component	Assumed position of GaN packages (grey). The vias are also shown.		
Power loss	 (Efficiency 96% VOUT=12V, IOUT=12 A → P≈0.04*(12 V*12 A)≈5.7 W @ Q1 + Q2) R_{dsON}≈ 17 mOhm , I_{OUT} = 12 A → P_{diss} ≈ 0.017 * 12² ≈ 2.5 W each Q1 and Q2 		
Environment	25 °C, natural convection ('still air') and radiation		

Calculation Results

The model contains approx. 4.2 million temperature nodes with a horizontal resolution of 0.1 mm. The calculation takes only a few seconds. The results for all layers and prepregs are available as pictures and tables.

Q1 and Q2 have different cooling conditions. Q1 is firstly located in a narrowed copper geometry in L1 (horizontal color edge with a sharp transition from yellow to light blue between VIN and RETURN) and secondly above copper holes = FR4 islands in L2, L3 and L4. The reason for the copper holes is unknown to us. Hence Q1 is warmer than Q2. The difference in temperature can also be seen in the other layers immediately below Q1 and Q2.

Experience from other previous projects shows that the calculated component temperatures with the thermal camera within proximately 5% if the power loss is given correctly. Additional uncertainties include the thermal conductivity of the prepregs, the actual thicknesses of layers and prepregs and the internal structure of the components.

With Pad Vias

WithoutThermal Pad Vias

In this design, the pad vias have a moderate influence on temperature. This can be seen in the temperature of L1. For Q1 the gain from the thermal vias corresponds to approx. 99 K/89 K \approx 10%. Q2 has a better ratio because there are no copper voids in the inner layers underneath.

GS61008P-EVBHF	Q1 ΔT (K)	Q2 ΔT (K)
Experiment	≈ 90	≈75
TRM with Pad Vias	≈ 89	≈ 80
TRM without Pad Vias	≈ 99	≈ 90

Table 2. Relative max. temperature above ambient in L1

2. STMicroelectronics AEK-AUD-D903V1

Quote from the data sheet "This system is required by new vehicles to alert pedestrians of the presence of electric powered vehicles that are generating much less noise. Warning sounds may be driver triggered (like a horn) or automatic mimicking engine sounds. From 2021 according to government regulations, the vehicle must make a continuous noise level of at least 56 dBA (within 2 meters) if the car is going 20 km/h (12 mph) or slower, and a maximum of 75 dBA. The FDA903D amplifier comes in a PowerSSO-36 slug-down package and features a configurable power limiting function, high-speed I²C and legacy mode interfaces, and an internal finite state machine."

View	 Features With FDA903D class D automotive grade audio amp Mono channel up to 45 W Supports audio stream via I²S interface Configurable through dedicated I²C bus Dedicated DC diagnostic interrupt pin to signal faults Dedicated hardware MUTE pin 		
Source	https://www.st.com/en/evaluation-tools/aek-aud-d903v1.html		
	https://www.st.com/resource/en/data_brief/aek-aud-d903v1.pdf		
Size	79 mm x 52 mm		
Component	U1 FDA903D-EHT PSSO-36 1/10W ±5% 1 x 45 W class D digital input automotive power amplifier		
Data sheet	https://www.st.com/en/automotive-infotainment-and-telematics/fda903d.html https://www.st.com/resource/en/datasheet/fda903d.pdf a d d d d d d d d d d d d d d d d d d d		
Layers	Not specified Assumption: <u>https://www.st.com/resource/en/application_note/an5407-how-to-optimize-the-rf-board-lay-out-for-stm32wl5xex-mcus-stmicroelectronics.pdf</u>		

Data

TRM White Paper No. 13: 'How effective are thermal vias?'

	•0	 Case 3: typical stack-up for BGA package with PCB total thickness = 1.60 mm Consider the configuration detailed in the table below. 						
				Table 15. Case 3: PCB	total t	thickness = 1.6	0 mm	
			Dielectr	ic materials			Metal layers	
		Element	Material	Nominal thickness h _x (µm)	ε	Layer	Nominal thic	kness t (μm)
	Sold	er mask (h ₃)	solder resist	20	3.5	Тор	3	15
	Prep	reg 1 (h ₁)	1 x 1080	76	4.18	Middle 1 and 2	3	5
	Core	e (h ₂)	7 x 7628	1268	4.74	Bottom	3	15
Thermal Vias	20	Tab	ole 4. Therr	mal data - PowerSSO	36 sl	ug-down pa	ckage	
Experiments	Symbo	4	Parameter				Value	Unit
	Rth j-a-2	s Therma	Thermal resistance junction-to-ambient (2s board)				56	°C/W
	R _{th j-a-2s}	2p Therma	Thermal resistance junction-to-ambient (2s2p board)			rd)	31	°C/W
	Rth j.a.2s2	Therma	Thermal resistance junction-to-ambient (2s2p+vias) 26			°C/W		

Model

The data set aek-aud-d903v1_gerber.zip contains Gerber- and drill files only (<u>https://www.st.com/re-source/en/board manufacturing specification/aek-aud-d903v1 gerber.zip</u>). I set the power loss for the calculation to 5 W.

Heat source and via field. 20 heat slug vias. Diameter 0.3 mm, spacing 1.2 mm, plating 20 micron	In L2 and L3, thermal vias are not connected to copper	
Assumption hea- ting power U1	Fictional. Same heating per area as the GaN modell (0.0725 W/mm ²) \rightarrow P _{diss} \approx 5 W	
Ambient	25 °C, still air + radiation	

Calculation results

The model contains approximately 2.9 million temperature nodes at a horizontal resolution of 0.1 mm. U1 is hotter than in the GaN model for the same power per mm². The extent to which the prepregs' thicknesses have influence should not be examined here.

With 20 heat slug vias

The mean component temperature is about. 133 °C. This results in $R_{\theta surf-ambient} \approx$ (133-25) K/5 W \approx 20 K/W.

Without heat slug vias

The through-plane temperature difference at 40 K is much steeper without vias. The top layer gets hotter, the bottom layer gets colder because the temperature equalization by vias is missing.

With 80 heat slug vias

I increase the number of vias from 20 to 80 while maintaining the same diameters and plating. Distance now 0.6 mm.

The more vias, the greater the vertical effective thermal conductivity of the vias area. If the vias ended on a good heatsink, that would result in better (but not necessarily proportional) cooling. In this case, the heat absorptive capacity of the top and bottom layers appears to be exhausted. Heat spreading on top layer is geometrically interrupted by the fiberized conductor tracks and the insulations between.

With 14 heat slug vias

Inside the original via field, the temperature (in steady state) is roughly evenly distributed. Where there is no temperature difference, no heat can flow. Let's check whether just the edge vias might be sufficient.

Heat source and reduced via field	
Diameter 0.3 mm, spacing 1.2 mm, plating 20 micron	

3. Analog DC2387A

To what extent do vias under a BGA contribute to cooling and what are the benefits of additional thermal vias?

Quoting from documentation: "Demonstration circuit 2387A features the LTM®8071 µModule® regulator, a high performance, high efficiency Silent Switcher® step-down regulator. The LTM8071 is a complete DC/DC point-of-load regulator in <u>a thermally enhanced</u> 11.25mm × 9mm × 3.32mm BGA package."

View	CHO Sovin, 4A STEP-DOWN µMODULE REGULATOR DEMO CIRCUIT 2387A VOIT VM-BOVEC FILM V-BOVEC FILM STREE CO DEMO TR/SS SHARE POOD BIAS CO CHO CO CHO CHO CHO CHO CHO		
Source	https://www.analog.com/en/design-center/evaluation-hardware-and-software/evalua- tion-boards-kits/dc2387a.html#eb-documentation		
Size	76 mm x 76 mm		
Component	https://www.analog.com/media/en/technical-documentation/data-sheets/ltm8071.pdf 11.25mm × 9mm × 3.32mm BGA package		

Data

	TOP VIEW				
	GND RT RUN FB NAK2 A BANK2 N A BANK3 VIN C BANK3 VOIT C BANK3 VOIT C BO-LEAD (11.25mm v9mm x 3.32mm) Stree Stree TJMAX = 125°C, 9.Ja = 18°CW, 9.Gbottom = 3.4°CW, 9.Gbottom = 3.4°CW, 9.Gbottom = 3.4°CW, 9.Gbottom = 3.4°CW, 9.Gbottom = 1.0g VIII + 1.0g VALUES DETERMINED PER JESD 51-9, 51-12 Stree Stree				
Layer stack	LAYER STRUCTURE .0028"(NIN.) LAYER 1 .0035" PREPREG .0014"(NIN.) LAYER 2 .0014"(NIN.) CORE NATERIAL 4 LAYERS .0014"(NIN.) .0035" PREPREG .0014"(NIN.) LAYER 3 .0035" PREPREG .0035" LAYER 4				
Experiment P _{diss} not known	DC2387A.pdf https://www.analog.com/en/design-center/evaluation-hardware-and-software/evalua- tion-boards-kits/dc2387a.html#eb-documentation No heat sinking, at room temperature No heat sinking, at room temperature Figure 6. Measured Thermal Capture at 48V _{IN} , 5A _{DUT} at 25°C				

Model

Gerber and drill files can be found at: <u>https://www.analog.com/media/en/evaluation-documenta-</u> <u>tion/evaluation-design-files/DC2387A.zip</u>. The proposed 25 additional thermal vias are not included in the .zip file.

TRM White Paper No. 13: 'How effective are thermal vias?'

Calculation results

The model contains approximately 4.6 million temperature nodes at a horizontal resolution of 0.1 mm. Because there are few interruptions in the layers, the heat spread works very well.

Original vias

With thermal vias

The extra thermal vias shown in the data sheet are not included in the drill file and are added manually. Diameter 0.254 mm, like the majority of the other holes.

4. Microchip EVB-USB5806

The evaluation boards examined so far have been characterized by generous heat spreading. Although high heat losses are not to be expected with this board, the shape of the signals under and around U1 is interesting enough to investigate.

Data

View		USB5806 USB3.2 GEN1 6-P		
		 Microchip's FlexConnect, PortSwap, PHYBoost™, and VariSense™ technologies USB5806 in a 100-pin QFN RoHS compliant package USB 3.2 Gen 1 compliant (SS, HS, FS, and LS operation) USB pins are 5 V tolerant Self powered operation 		
		 Six downstream USB 2.0 / USB 3.2 Gen 1 ports 		
Source	https://www.microchip.com/en-us/development-tool/evb-usb5806			
Size	127 mm x 76 mm			
Component	U1 IC, USB58xx, USB59xx, 7 Port USB 3.1 Gen1 Hub, QFN100 Microchip Technology			

TRM White Paper No. 13: 'How effective are thermal vias?'

Laver stack		Name	Material		Туре	Weight	Thickness
Edyci Stuck		Top Overlay			Overlay		
		Top Solder	Solder Resist		Solder Mask		0.4mil
		Top Layer 1			Signal	1oz	2mil
		Dielectric1	370HR(1ply 1		Prepreg		4.3mil
		Inner Layer 2		-	Plane	1oz	1.4mil
		Dielectric 2	370HR		Core		47mil
		Inner Layer 3			Plane	1oz	1.4mil
		Dielectric 3	370HR(1ply 1	58)	Prepreg		4.3mil
		Bottom Layer 4		-	Signal	1oz	2mil
Thormal Viac	26						
Thermal Vias	36						

Model

Gerber and Altium files are available. Altium designs can be imported with TRM almost automatically. https://ww1.microchip.com/downloads/en/DeviceDoc/EVB-USB580x_A-AltiumFiles.zip

	Name	Туре	File	View	FR4 white	Thick (um)	Conductor	Dielectric	Expose	Color
	Silk	ger	EVB-USB580x.GTO	View	✓	1	Cu\$TRM	FR4\$TRM	Expose	
Layer stack	Top Layer	ger	EVB-USB580x.GTL	View	-	51	Cu\$TRM	FR4\$TRM	Expose	
	Dielectric	pre		View	-	109	Cu\$TRM	FR4\$TRM		
	Internal Plane 1	ger	EVB-USB580x.GP1	View		36	Cu\$TRM	FR4\$TRM	Expose	
	Dielectric	pre		View	-	1194	Cu\$TRM	FR4\$TRM		
	Internal Plane 2	ger	EVB-USB580x.GP2	View		36	Cu\$TRM	FR4\$TRM	Expose	
	Dielectric	pre		View	✓	109	Cu\$TRM	FR4\$TRM		
	Bottom Layer	ger	EVB-USB580x.GBL	View	✓	51	Cu\$TRM	FR4\$TRM	Expose	
Layers 1 to 4	LT					••••••••••••••••••••••••••••••••••••••				
Heat source U1	Vias are contaced	l to o	copper in L1 a	nd L	2 only					
and original vias Diameter 0.25 mm, distance 1.2 mm, plating 20 micron										

Assumed hea- ting power	Fictitious. 5 W to be comparable with the other models.
Ambient	25 °C, still air + radiation

Calculation results

The model contains approximately 7.7 million temperature nodes at a horizontal resolution of 0.1 mm.

Original heat slug vias

Temperature L1		- 124
120 °C		- 104 -
Original Viafs		- 84
L2 similar in shape		64
		- 44
Temperature L4		- 124
93 °C		104
L3 similar in shape		- 84
		- 64
	L4	- 44

The vias on L4 are hot (113°C) because the heat fed into them by the component cannot easily escape from the anti-pads.

Without heat slug vias

5. MiniPC

The "MiniPC" is part of the demo boards of an Altium Designer[®] installation. What makes the board interesting are its 16 layers (!) and the large BGA with its many vias (through-holes and back-drills). It is sometimes claimed that the heat dissipation of such components should work well due to the many connections alone. The original design actually contains a matching BGA fan, which we of course don't take into account here.

Model

View	
U1	40 mm x 40 mm
Thermal power assumed	30 W
Ambient	25 °C, still air + radiation

Calculation results

Original BGA vias

Top and bottom are about the same temperature. It indicates good thermal coupling between layers. The small boxes within the BGA contour are bottom capacitors and resistors.

Without BGA vias

In fact, it will be +20 K warmer. So the signal vias under the BGA effectively contribute to cooling.

6. Intersil ISL8340

This 4-layer board has already been described as a case study (<u>https://www.adam-research.de/doku-mente/fallstudien-en/</u>). The infrared image and the simulation agree reasonably. However, the heat spreading is hindered by the type of potential separation used, which looks approximately the same in all layers. Heat vias are therefore unlikely to be effective.

Data

View	www.adam-research.de/pdfs/TRM_CaseStudy1.pdf
Source	https://www.edn.com/step-down-module-delivers-100-w-from-reduced-footprint/ "The ISL8240M is a fully encapsulated step-down switching power supply from Intersil that is capable of providing up to 100 W of output power, while occupying a 17×17-mm footprint for use in infrastructure and cloud computing hardware."
Experiment 8 W 100 °C	

Model

Layer stack	Level	A Name	Туре	File	View	FR4 white?	Thick (mu)	Conductor	Dielectric
	1	L1	ger	layer1.art	View		70	Cu\$TRM	FR4\$TRM
	2	pre1	pre		View		210		FR4\$TRM
	3	L2	ger	layer2.art	View		35	Cu\$TRM	FR4\$TRM
	4	pre2	pre		View		850		FR4\$TRM
	5	L3	ger	layer3.art	View		35	Cu\$TRM	FR4\$TRM
	6	pre3	pre		View		210		FR4\$TRM
	7	L4	ger	layer4.art	View		70	Cu\$TRM	FR4\$TRM
Layers 1 to 4 Only compo- nent surround- ings are shown									
thermal power loss	http://www.	edn.com/email-desig	electroni n-remov	µ <u>cs-produc</u> ves-heat-fr	ets/electronic- om-encapsula	product atedco	-review mpact-:	s/other/443 50A-power	39182/Unique -modules
Ambient	20 °C, still a	ir + radia	tion						

Calculation results

Original Viafeld

Without any via

In fact, without any vias, it gets +4 K warmer only. So almost no via contribution to cooling here.

References

There are many sources and documents on the Internet about the topic of heat vias. Here just a brief selection.

[1] "A Quick PCB Thermal Calculation for Power Electronic Devices with Exposed Pad Packages" (2017) https://www.onsemi.com/pub/Collateral/AND9596-D.PDF

[2] Ellison, G.N.: Thermal computations for electronics. Boca Raton: CRC Press, 2011

[3] Stout, R.: "Thermal Considerations for a 4x4 mm QFN" (2009) <u>https://www.onsemi.com/pub/Collat-</u> eral/AND8432-D.PDF

[4] TRM Thermal Risk Management. https://www.adam-research.de/en/software/

[5] "Understanding Thermal Analysis of RF Devices" (2023) <u>https://www.qorvo.com/resources/d/understanding-thermal-analysis-of-rf-devices-application-note</u> (with links to video and web calculator)

Contact:

Dr. Johannes Adam ADAM-Research Theodor-Heuss-Strasse 12 69181 Leimen, Germany info@adam-research.de http://www.adam-research.com